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1 Introduction

The P
?
= NP problem is one of the most well-known open problems in theoretical

computer science, if not all of mathematics. Due to the enormous practical and
philosophical implications of the question “Can every problem whose solutions can be
easily verified also be easily solved?”, a lot of research has been done in an attempt
to prove equality or inequality of these two fundamental complexity classes since the
question was first formally posed in 1971 [Coo71]. There is even a $1 million prize
offered by the Clay Mathematics Institute for a solution [Cla], established in 2000 along
with prizes for six other then-unsolved problems. However, one possibility often gets
ignored when discussing the problem and the attempts to solve it: What if we cannot
prove either one of P = NP and P ̸= NP? This is known as independence from a logical
theory. When David Hilbert posed his famous list of unsolved problems in 1900, which
was a major inspiration for the Clay Institute’s Millenium Prize, one of the problems
on his list was the continuum hypothesis, which was shown to be independent of our
typical axiom system for set theory in 1963 [Coh63].
While there is of course no known independence proof for P ?

= NP, research into this
possibility has been done. Here, we aim to present several of the results of that research,
focusing on two main topics.
After giving some definitions and specifying common notation in Chapter 2, Chapter 3
discusses relativized variations of the P ?

= NP problem, i.e. versions using oracle machines.
We present the well-known result from [BGS75] that PB = NPB and PC ̸= NPC both
hold for different decidable oracles. Building on this, a result from [HH76] then shows the
existence of a machine M such that PL(M) = NPL(M) is independent of typical theories.
In addition to this representation-dependent result, we then present a framework from
[Har85] that shows representation-independent independence results, i.e. the existence
of oracles A such that PL(M) = NPL(M) is independent of a theory for any machine M

that decides A. These results demonstrate that an independence result is not out of
the question for the unrelativized version.
In Chapter 4, we then investigate possible consequences of a hypothetical independence
result for the unrelativized version. Specifically, [BH91] show that an independence
result for P

?
= NP would imply certain runtime bounds for NP-complete problems such

as SAT and prevent the existence of a certain type of one-way functions.
A previous survey of results in this area has been given by Aaronson in [Aar03]. However,
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that survey focuses mostly on presenting a broad collection of results, with almost no
proofs. Here, we instead aim to give an overview of important results on the topic that
includes their proofs and the various proof techniques that have been employed in this
area.
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2 Definitions

First, we define a set of consistent notations to present all results in a common framework
and give some standard definitions and results from computability theory and logic
that are not specific to the presented topics.

2.1 Turing machines

Definition 2.1. We choose some standard Gödelization (encoding) scheme for deter-
ministic Turing machines. For any i ∈ N, Mi is the deterministic Turing machine
encoded by i, or some fixed Turing machine M̂ if i is not a valid encoding in our
scheme. The encoding is chosen such that a machine can efficiently simulate Mi given i.
Analogously, we choose a scheme such that Ni is the nondeterministic Turing machine
encoded by i.

Nondeterministic machines will generally only be used in contexts where a runtime
bound is given, since they are equivalently powerful in terms of accepting languages
with no complexity bounds and they do not cleanly define functions.

Definition 2.2. Mi(x) denotes the computation of Mi on the input x, e.g. “Mi(x)

halts” means that Mi halts on the input x.

Definition 2.3. A Turing machine accepts an input iff it halts and outputs 1 when
given that input. The language recognized by a Turing machine Mi is the set of all
inputs that the machine accepts and is denoted by L(Mi).

Both of the previous definitions apply analogously to nondeterministic machines.

Definition 2.4. Unless specified otherwise, the term function is used to refer to partial
functions. This means that functions may be undefined for some inputs.

Definition 2.5. For any i ∈ N, φi is the function computed by Mi, i.e. φi(x) = y iff
Mi(x) halts and outputs y, and φi(x) is undefined iff Mi(x) does not halt.

Definition 2.6. For any i ∈ N, alphabet Σ, and language A ⊆ Σ∗, MA
i is the oracle

Turing machine encoded by i with the oracle A. This uses an adjusted encoding scheme in
which the oracle question and answer states are also specified. We define nondeterministic
oracle Turing machines NA

i accordingly.
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Note that because the index i is being interpreted differently for oracle machines, the
machine MA

i may behave completely differently from Mi.

Definition 2.7. A Turing machine Mi is total iff φi is total, i.e. the machine halts
for all inputs.

Definition 2.8. If Mi is total, we say that it decides the language L(Mi).

Every Turing machine recognizes a language, but only total Turing machines decide
a language.
In some situations, we want to restrict Turing machines to only those that decide the
languages of a specific complexity class. To ensure we can still index those Turing
machines using natural numbers, we use a recursive representation (see [Har85]):

Definition 2.9. A recursive representation of a family C of languages is a total
computable function f such that the members of C are exactly those languages that are
recognized by some Turing machine Mf(n), where all of those machines are total.

For a simple time- or space-bounded complexity class, we can accomplish this by
having the function f modify the machine Mi by adding a counter to it that tracks the
time or space used by the original computation, and immediately halting and rejecting
the input if a certain bound is exceeded. We illustrate this for the polynomial time
classes.
The system for polynomial time Turing machines defined in [BGS75] can be implemented
by defining a function P such that the machine MP (i) has an artificial runtime bound
of pi(n) := i+ ni, where n is the input length. We refer to this system and analogous
systems for other complexity classes as standard enumerations of those classes.
For simplicity’s sake, we use NP (i) to denote a nondeterministic Turing machine trans-
formed using the same process, even though the actual function P would have to be
different due to the different interpretations of i in the different encodings. The same
applies to the oracle machine versions.
Note that for a given problem in e.g. P decided by a given polynomial-time machine Mi,
that machine might require more than pi(n) steps and thus MP (i) will halt too early
and decide the wrong language. However, for every such Turing machine, there are
infinitely many machines with the same behavior as Mi, which can be constructed e.g.
by adding unreachable states with arbitrary transitions to the encoding. Eventually,
this will produce an encoding j such that Mj behaves the same as Mi, but with j

sufficiently large such that pj(n) bounds its runtime. MP (j) is then a machine from the
standard enumeration that decides the desired language. Therefore, for every problem
in P or NP respectively, there will be a machine in this numbering that has enough
available runtime to solve it. The same principle applies to standard enumerations of
other complexity classes.
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2.2 Logic

2.2.1 General terms

All results presented here use first-order predicate logic as their basis. This is because
Gödel’s completeness theorem [BBJ07, Ch. 14] shows the existence of a complete and
sound formal calculus, i.e. a formal proof system in which precisely all true implications
in first-order logic can be proven. This allows Turing machines to verify whether a
given formal proof is correct, and it means that any statement that semantically follows
from a set of formulas has a formal proof from those formulas. The specific choice of
proof calculus does not matter for any results shown here, so we can assume e.g. the
Gentzen calculus of natural deduction.

Definition 2.10. A sentence is a logical formula with no free variables.

Definition 2.11. If A and B are logical formulas or sets of logical formulas, then
A ⊢ B means that B can be proven from A.

Definition 2.12. A logical theory T is a set of sentences that is closed under deduction,
i.e. for any sentence A, T ⊢ A implies A ∈ T . The members of T are also known as its
theorems and are said to be provable in T .

Essentially, a theory is a set of statements that we consider to be provably true. For
a theory to be interesting to us, we generally require it to have a number of additional
properties.

Definition 2.13. A theory T is axiomatizable iff it is the closure under deduction of a
decidable set of axioms.

Axiomatizable theories are useful in a computational context because they are
recursively enumerable [Rog87, p. 95], which means they are recognized by some Turing
machine.

Definition 2.14. A theory T is consistent iff there is no sentence A such that A ∈ T

and ¬A ∈ T .

Going forward, we will only study theories that can be seen as making statements
about the natural numbers. Any other objects that we want to discuss, e.g. Turing
machines or strings, will be encoded as natural numbers using some kind of Gödeliza-
tion/encoding scheme.

Definition 2.15. A theory T that can be interpreted as having the natural numbers
as its domain of discourse is sound iff all of its theorems are true about the standard
natural numbers.
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We refer to statements that are true about the standard natural numbers simply as
true. It is crucial to keep in mind the distinction between this truth and provability,
which depends on the specific theory we are studying. From Gödel’s first incompleteness
theorem [BBJ07, Ch. 17], we know that for any axiomatizable, consistent, sound theory,
there will be true statements that are not provable in that theory. In fact, statements
of that kind will be our main focus:

Definition 2.16. A sentence A is independent of a theory T iff neither A nor ¬A is
provable in T .

A specific sound and axiomatizable theory that we will often discuss is Peano
arithmetic. We give a version of the formulation from [Men97], where S denotes the
successor function:

Definition 2.17. Peano arithmetic or PA is the theory generated by the following
axioms:

(1) ∀a∀b(a = b ↔ S(a) = S(b))

(2) ∀a(S(a) ̸= 0)

(3) ∀a(a+ 0 = a)

(4) ∀a∀b(a+ S(b) = S(a+ b))

(5) ∀a(a · 0 = 0)

(6) ∀a∀b(a · S(b) = (a · b) + a)

for every predicate P in the language of arithmetic:

(7P) (P (0) ∧ ∀a(P (a) → P (S(a)))) → ∀aP (a)

Note that (7P) is not a single axiom, but an axiom schema providing an axiom for
every possible predicate. This is allowed for an axiomatizable theory because the set of
axioms, while infinite, is decidable.
PA is useful because it is powerful enough to express statements about the behavior
of Turing machines. Although there are smaller theories that also allow this, for
consistency’s sake, we will mostly study PA and larger theories in the upcoming
chapters.

2.2.2 Classes of formulas

For some results, we need to classify sentences based on the quantifiers that they use.
This system can be found in standard works such as [Rog87, p. 303]. We use this
classification both for logical formulas and for metalogical statements where necessary.
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Definition 2.18. We use (∀a < b)F and (∃a < b)F as abbreviations for ∀a(a < b → F )

and ∃a(a < b ∧ F ). These are known as bounded quantifiers.

Definition 2.19. A formula containing only bounded quantifiers is known as a ∆0

formula.

Bounded quantifiers are important because their application does not change the
decidability of a relation. For example, if the set {(a, b) | R(a, b)} is decidable for some
binary relation R, the set {b | (∀a < b)R(a, b)} is also decidable. This is because the
decision algorithm can simply be extended to check all finitely many possible values for
the variables being quantified by bounded quantifiers.
Prefixes of unbounded quantifiers are characterized by the number of groups of alter-
nating quantifiers, along with whether the first quantifier is ∀ or ∃.

Definition 2.20. A Σn formula is a formula of the form ∃x1∀x2∃x3 . . . QxnF , where Q

is the appropriate quantifier to complete the alternating pattern and F is a ∆0 formula.
A Πn formula is defined by the analogous construction beginning with a ∀ quantifier.

Similarly, a condition is a Σn condition if it can be expressed as ∃x1∀x2∃x3 . . . QxnP ,
where P is a condition that can be decided by a Turing machine. In this case, the
quantifiers are not logical symbols, but just a notation for the structure of a statement.
Again, Πn is used analogously.

2.2.3 The arithmetical hierarchy

Using these quantifier prefixes, we can define a hierarchy of sets of natural numbers
known as the arithmetical hierarchy, as given in [Rog87, pp. 301–305].

Definition 2.21. Σn is the class of all sets of natural numbers for which membership
can be expressed as a Σn condition, or equivalently all sets which can be arithmetically
defined by a Σn formula. The Πn classes are defined analogously.

We use the following standard results about the hierarchy:

Lemma 2.22. The following hold for all n:

• Σn ⊊ Σn+1

• Σn ⊊ Πn+1

• Σn ̸= Πn

• Σn is closed under ≤m reduction.

All of these also hold when swapping Σ and Π.
An important consequence of these results is that because the classes Σn and Πn are
distinct and closed under reduction, any Σn-complete sets cannot be members of Πn

and vice versa.
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3 Relativization

Since P
?
= NP is a difficult question, we can turn to variations of the problem in the

hope that their solution can help us answer the original question. Specifically, we look
at relativized versions of the question. This means that instead of studying standard
Turing machines, we study oracle Turing machines relative to some oracle A. Then, PA

is the class of problems that can be solved by a deterministic oracle Turing machine
with oracle A in polynomial time, and NPA is the nondeterministic equivalent. We can
now study PA ?

= NPA for different oracles A. It is clear that if A ∈ P, then PA = P and
NPA = NP. Therefore an answer for such an oracle (or an answer for a wider class of
oracles that includes such oracles) would give us an answer to the original question.
Thus we want to study which answers to PA ?

= NPA are even possible.

3.1 Representation-dependent results

The first important results in this area are presented in [BGS75]. There, the authors
show that there are both decidable oracles B such that PB = NPB and decidable oracles
C such that PC ̸= NPC . A summary of those proofs follows.

Theorem 3.1. There is a decidable set B such that PB = NPB.

Proof. Let B be any PSPACE-complete set (such as QBFSAT). Then by definition,
B ∈ PSPACE and PSPACE ⊆ PB. Also, NPB ⊆ NPSPACE by oracle replacement, i.e. by
simulating the PSPACE machine for the oracle. Since NPSPACE = PSPACE by Savitch’s
theorem [Sav70], we have NPB ⊆ NPSPACE = PSPACE ⊆ PB. The opposite inclusion
PB ⊆ NPB holds trivially, proving equality.

The following proof relies on the function P that limits the runtime of Turing machines
as described earlier.

Theorem 3.2. There is a decidable set C such that PC ̸= NPC.

Proof. For any set X, let W (X) := {x | ∃y ∈ X : |y| = |x|}, that is, the set of all words
x that have the same length as some word y in X. W (X) ∈ NPX via an oracle machine
NX

P (i) that nondeterministically guesses a string of the same length as its input, queries
the oracle X, and accepts iff the oracle accepts. Note that if W (X) contains a string x,
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it must also contain all other strings of length |x|.
We construct a set C in stages such that W (C) /∈ PC . Let C(i) denote the (finite) set
of strings placed in C before stage i, C(0) = ∅, and n0 = 0.
In each stage i, we do the following: Choose n > ni sufficiently large that pi(n) < 2n

(with pi(n) := i + ni as defined earlier). This is always possible because 2n grows
asymptotically faster than any polynomial. Simulate M

C(i)
P (i) on the input xi := 0n. If the

machine accepts, add nothing to C in this stage, i.e. C(i+ 1) := C(i). Otherwise, add
the first string in lexicographical order of length n that was not used as an oracle query
in that computation to C. There are 2n binary strings of length n, but the number
of oracle queries is bounded by the runtime of pi(n), which is strictly less than 2n by
choice of n. Therefore, such a string will always exist. Finally, let ni+1 = 2n. This
ensures that every additional string added in later stages will be longer than 2n.
Since every string added to C in later stages is longer than 2n and thus longer than any
of the oracle queries, whose length is bounded by the runtime of pi(n), and since the
only string that can be added during the stage itself is one that was not queried by
the oracle computation, the simulation of MC(i)

P (i) behaves exactly as if C had been used
as the oracle instead of C(i), so the computation is indistinguishable from that of the
machine MC

P (i). Thus, each stage i ensures that the machine MC
P (i) does not recognize

W (C) as follows:
If stage i adds a string of length n to C, then MC

P (i) must have rejected the input 0n.
But since C contains a string of length n, we know that 0n ∈ W (C) by definition.
Therefore, MC

P (i) rejected a member of W (C) and thus does not recognize W (C).
If stage i does not add a string to C, then MC

P (i) must have accepted the input 0n for
that stage’s choice of n. But since no other stage can add a string of length n to C, C
cannot contain a string of that length and thus 0n /∈ W (C). Therefore, MC

P (i) accepted
a string that is not in W (C) and thus does not recognize W (C).
Since every language in PC is recognized by some machine MC

P (i), we therefore know
that W (C) /∈ PC . But since W (C) ∈ NPC , we have shown that PC ̸= NPC , and C is
decidable via the above construction.

These results tell us that we cannot resolve P
?
= NP by showing a general result for

all oracles. However, if we could at least show that for any oracle A, one of P = NP or
P ̸= NP were provable, we could rule out an independence result. This possibility was
first eliminated in [HH76]. Here, the authors show, building on the results in [BGS75],
that decidable oracles A can be constructed for which PA = NPA is independent of a
given theory. This result is presented below.

Definition 3.3. Let T be an axiomatizable, consistent, sound theory with PA ⊆ T .
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Theorem 3.4. For every such theory T , we can effectively construct a Turing machine
M such that the statement PL(M) = NPL(M) is independent of T .

Proof. Let B and C be decidable sets such that PB = NPB and PC ̸= NPC as in
Theorems 3.1 and 3.2. Define a function p : N2 → {0, 1} as follows:

p(x, j) =


1, if x ∈ C and there exists a proof for PL(Mj) = NPL(Mj) among the first

x proofs in T , or if x ∈ B and there exists a proof for PL(Mj) ≠ NPL(Mj)

among the first x proofs in T

0, otherwise.

Here, “the first x proofs in T ” means the first x valid proofs in quasi-lexicographical
order.
Since T is axiomatizable, a Turing machine can enumerate its valid proofs and check
if they prove a given statement. Since B and C are also decidable, p is computable.
According to the Sm

n theorem [Soa87, p. 16], we can thus construct a computable
function σ for which the following holds for all j:

φσ(j)(x) = p(x, j)

According to Kleene’s recursion theorem [Soa87, p. 36], σ has a “fixed point” i0 with
the following property:

φi0(x) = φσ(i0)(x)

Combining the two equations above results in:

φi0(x) = p(x, i0)

Intuitively, i0 is the encoding of a Turing machine that, given an input x, searches the
first x proofs in T for a proof that P is or is not equal to NP relative to its own language
as an oracle. It also checks for membership in B or C as appropriate and chooses its
output accordingly.
Since T is consistent, there cannot be both a proof in T that PL(Mi0

) = NPL(Mi0
)

and a proof in T that PL(Mi0
) ̸= NPL(Mi0

). Therefore, if there is a proof in T that
PL(Mi0

) = NPL(Mi0
), then for all x greater than or equal to that proof’s index in the

enumeration, Mi0 will accept iff x ∈ C. Therefore, L(Mi0) differs at most finitely from
C. If two oracles A1 and A2 differ finitely, then PA1 = PA2 and NPA1 = NPA2 , since the
differences can be hardcoded into each machine and handled in constant time before
each oracle query. Therefore, since PC ̸= NPC , PL(Mi0

) ̸= NPL(Mi0
) must also be true.

Analogously, if there is a proof in T that PL(Mi0
) ̸= NPL(Mi0

), then L(Mi0) differs at
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most finitely from B and therefore PL(Mi0
) = NPL(Mi0

) must be true.
Since T is sound, neither of those cases is possible. Therefore, there is no proof in
T for either PL(Mi0

) = NPL(Mi0
) or PL(Mi0

) ̸= NPL(Mi0
), that is, PL(Mi0

) = NPL(Mi0
) is

independent of T .

Now, we claimed above that there are decidable oracles A for which PA = NPA

is independent of F . However, that is not quite what the result above shows. The
result shows specifically that there is a Turing machine Mi0 such that the statement
PL(Mi0

) = NPL(Mi0
) is independent of F . However, the conclusion we come to at the end

of the proof above shows that p will actually always return 0, since the existence of a
proof that would make it output 1 would imply the inconsistency of T . Therefore, our
oracle A = L(Mi0) must be the empty set. Since we know that P∅ = NP∅ is equivalent to
P = NP, this suggests at a glance that the unrelativized version must be independent of
T . But crucially, according to Gödel’s second incompleteness theorem [BBJ07, Ch. 18],
T cannot prove its own consistency, so it cannot prove that A is the empty set.
This means that the independence of PL(Mi0

) = NPL(Mi0
) from T is not a property of

the language used as an oracle, but of the Turing machine that we use to define said
language. Such an independence result is said to be representation-dependent, since it
depends on the representation of the language by a machine.

3.2 Representation-independent results

Thus, the natural question arises whether there are any languages for which PA = NPA

is independent no matter which representation of A we choose. This turns out to also
be possible. In [Har85], the author shows that there are languages relative to which
P = NP is independent of a theory for any recursive representation of the problem.
This is accomplished via a relatively generic framework using the arithmetical hierarchy
which we will present in the following section.

3.2.1 Recursive representations and the Naming Lemma

Lemma 3.5 (Naming Lemma). A family C of decidable languages has a recursive
representation iff there exists an axiomatizable, consistent, sound theory T such that
for every L ∈ C, there is a total Turing machine M that decides that language and for
which it can be proven in T that M is total and that L(M) ∈ C.

Proof. If C has a recursive representation f , let T be Peano arithmetic with the
additional axiom “∀n(L(Mf(n)) ∈ C and Mf(n) is total)”. Because f is computable,
we can construct this axiom by expressing the Turing machine that computes f using
logical formulas. T can prove the required statements by construction.
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Conversely, let T be a theory that fulfills the conditions above. We can recursively
enumerate all i for which “L(Mi) ∈ C and Mi is total” is provable in T by recursively
enumerating all valid proofs and checking whether they prove a statement of the desired
form, which gives us a recursive representation for C.

Definition 3.6. Let R be a decidable set whose members are encodings of total Turing
machines. Then an R-representation of the family of languages C is a recursive
representation of C whose image is a subset of R.

The main proof technique used in [Har85] to show representation-independent inde-
pendence results relies on the arithmetical hierarchy. First, we prove that a certain set
D is Π2-complete. Then, we show that the existence of a recursive or R-representation
for some set C would show membership of D in Σ2. Since Π2-complete sets cannot be
in Σ2, we can conclude that no such representation can exist.
We present the version of this result that is used for relativized versions of P ?

= NP here.
For this proof, we require a standard enumeration ME(0),ME(1), . . . of Turing machines
using O(22

n
) space and a standard enumeration MP (0),MP (1), . . . of polynomial time

deterministic Turing machines. Now, we define a set D that we show to be Π2-complete,
which will allow us to apply the proof technique described above.

Lemma 3.7. D = {i | PL(ME(i)) ̸= NPL(ME(i))} is Π2-complete.

Intuitively, D is the set of all encodings of O(22
n
) space Turing machines whose

accepted language L is an oracle for which PL ̸= NPL.

Proof. First, we need to prove membership in Π2.
For any oracle A, let NA

com be a nondeterministic polynomial time Turing machine that
decides the NPA-complete language

UA
NP = {i#x##|x|k·|i| | Ni accepts x in time |x|k},

based on the universal complete languages defined in [Har89]. Using this, D can be
defined as follows:

D =

{
i

∣∣∣∣ ∀j∃x(ML(ME(i))
P (j) (x) accepts ⇔ N

L(ME(i))
com (x) rejects

)}
.

Intuitively, the reason that this is an equivalent formulation of D is that PL(ME(i)) ̸=
NPL(ME(i)) (the defining condition of D) holds iff no deterministic polynomial time
Turing machine with oracle L

(
ME(i)

)
decides an NPL(ME(i))-complete language (anal-

ogous to the fact that P ̸= NP iff no polynomial time Turing machine decides an

NP-complete language). This holds iff for every such Turing machine M
L(ME(i))
P (j) defined
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by an index j, there is an input x for which the output differs from the machine for the
complete language. Since the runtimes of the machines in the predicate are bounded,
the predicate is decidable. Therefore, this formulation proves that D ∈ Π2.
Secondly, we need to prove Π2-hardness.
The idea of the proof presented in [Har85] is to reduce the known Π2-hard problem
INF = {i | L(Mi) is infinite} to D by constructing a machine whose accepted language
differs only finitely from oracles with PB = NPB and PC ̸= NPC respectively. However,
while this idea appears sensible, the stage construction used in the paper to prove it
appears ill-defined. Therefore, no detailed hardness proof is presented here.

Using this language, we can now prove the representation-independent independence
result:

Theorem 3.8. There exists an oracle A ∈ SPACE(22
n
) such that PA ̸= NPA, but for

no ME(i) with L
(
ME(i)

)
= A, it can be proven in T that PL(ME(i)) ̸= NPL(ME(i)).

Proof. Assume that for each A ∈ SPACE(22
n
) with PA ̸= NPA, there is a machine

ME(i) with L
(
ME(i)

)
= A for which T can prove PL(ME(i)) ̸= NPL(ME(i)). Then by the

Naming Lemma, per definition of D, the language family {L | ∃i ∈ D : L = L
(
ME(i)

)
}

has a recursive representation f . But given that recursive representation, D can be
formulated as

D =
{
i
∣∣∃j∀x (ME(i)(x) = Mf(j)(x)

)}
with a decidable predicate. Intuitively, this expresses D as the set of all i for which
a machine Mf(j) exists in the recursive representation which agrees with ME(i) for all
inputs. The structure of this formulation implies D ∈ Σ2. Since D is Π2-complete, this
is a contradiction. Therefore, there must be an A for which the assumption does not
hold.

3.2.2 Chunky sets

In [KOR87], the authors construct a more general framework for proving representation-
independent independence results and use it to prove, among others, many of the
theorems from [Har85] presented above. Unfortunately, a lot of non-trivial results in
this paper are presented without proof and the core terminology is not well explained.
Therefore, we will only give a very brief overview here:
The core idea is the definition of a class of sets of languages called chunky sets, which
contain sets with arbitrarily fast growth in a certain sense. For certain pairs of complexity
classes R and S with closure properties relating to chunky sets, there are then sets L0 in
R \ S for which the infinity of L(M) for any machine M that decides L0 is independent
of a given theory. This methodology can be used, with varying choices of R and S, to
prove most of the results from [Har85].
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4 Consequences of an independence
result for P

?
= NP

While independence from a mathematical theory is a fairly theoretical concept, P ?
= NP

is a question whose answer has significant practical consequences for the runtime of
actual algorithms. Therefore, the question arises what the practical consequences of
an independence result would be. In [BH91], the authors show that if P = NP is
independent of Peano arithmetic or a larger theory, then NP is in some sense very close
to P, that is, problems in NP have deterministic runtime bounds that are very close to
polynomial.

4.1 The Wainer hierarchy

The proof relies on the Wainer hierarchy, a family of fast-growing functions introduced
in [Wai70]. The version used in [BH91] uses the following basic definition:

F1(n) = 2n

Fk+1(n) = F
(n)
k (n)

where F (n) is the function F iterated n times. The hierarchy also allows infinite ordinals
as indices. We give a brief primer on ordinals here.
The finite ordinals are the natural numbers 0, 1, 2, . . . , interpreted as the position of
items in some linearly ordered set. For example, 3 can denote the 3rd item in a set.
However, for some infinite linearly ordered sets, these ordinals may not suffice. For
example, if we define the set {0, 1, 2, . . . , x}, where x /∈ N is some new element, and
we extend the definition of the order relation such that n < x for all n ∈ N, no finite
ordinal can denote the position of the element x in this set. Instead, we define a limit
ordinal ω, which is the limit of the sequence of finite ordinals 0, 1, 2, . . . . We can then
say that x is the ωth member of the set. Every limit ordinal α has such a defining
sequence, known as its fundamental sequence {α}(n). The formal details of ordinals are
beyond the scope of this summary and can be found e.g. in [Jec03, Ch. 2], but we can
use these concepts to define the functions in the Wainer hierarchy with limit ordinal
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indices as follows, using the fundamental sequence of the ordinal:

Fα(n) = F{α}(n)(n)

For example, Fω is a version of the Ackermann function.
We define some terms relating to functions:

Definition 4.1. A function f dominates a function g iff f(n) > g(n) for all sufficiently
large n.

For every α < β, Fβ dominates Fα.

Definition 4.2. ε0 is the first ordinal α satisfying ωα = α. (This is the limit ordinal
of the sequence ω, ωω, ωωω

, . . . .)

From here on out, we take “the Wainer hierarchy” to be those functions Fα for which
α < ε0. If any of those functions dominate a function f , f is said to be dominated by
the Wainer hierarchy.

Definition 4.3. A total computable function f is provably recursive in a theory T ⊇ PA
iff there is a Turing machine M that computes f for which it can be proven in T that
M is total.

Note that the definition of provably recursive functions does not require the theory
to be able to prove that the algorithm computes the desired function. This restricts the
power of some of the future results in subtle ways.
[Wai70] proves the following lemmas:

Lemma 4.4. Every function Fα in the Wainer hierarchy is provably recursive in PA.

Lemma 4.5. If a total computable function f : N → N is provably recursive in PA, it
is dominated by the Wainer hierarchy.

Therefore, the functions in the Wainer hierarchy are useful for measuring the growth
rate of provably recursive functions in PA.

Definition 4.6. A function f : N → N is a standard complexity function iff it is
time-constructible and it is provable in PA that f is total, monotonic, and unbounded.

Note that time-constructibility (or indeed computability) are not required in the
definition given in [BH91]. However, these properties appear to be necessary for the
proofs using this definition, which is why we have added them here.
Standard complexity functions will often be used as space or time bounds to define
complexity classes. The vast majority of functions commonly used for this purpose (e.g.
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nk, log n, 2n) are standard complexity functions, as are some more niche ones like the
Ackermann function and its inverse.
A number of results will require “inverting” functions that are not bijective. Specifically,
these will often be functions representing growth rates. Therefore, we define a more
general notion of inverse functions that works for those functions as follows:

Definition 4.7. For any total, monotonic, and unbounded function f , let f−1(n) :=

max{i | f(i) ≤ n}.

Note that this definition does not apply only to standard complexity functions, but
also to functions that have the same function properties, but not provably so.
The following lemma is presented in [BH91] without proof:

Lemma 4.8. If f and h are standard complexity functions and g is a monotonic
function that is not dominated by the Wainer hierarchy, there are infinitely many n ∈ N
satisfying ∀m((n < m < h(n)) → (g−1(m) < f(m) < g(m))).

Intuitively, h is used to define the size of progressively larger intervals, and the lemma
states that there are infinitely many of those intervals within which the function f is
sandwiched between g and its inverse.

4.2 Strong proof systems

We present a series of results from [BH91]. We again let T denote an axiomatizable,
consistent, sound theory that includes Peano arithmetic. As a working tool, we introduce
a stronger theory T1 for every such T as follows:

Definition 4.9. T1 is the theory generated by the set
T ∪ {φ | φ is a Π1 formula that is true (in the standard model of arithmetic)}.

Since T is sound and we only add true statements to it, T1 is also sound. However, it
can be easily seen that T1 is not axiomatizable:
Let K := {i | Mi(i) halts} be the halting problem and K̄ its complement. We can
reduce K̄ to T1 by expressing the condition “Mi(i) does not halt” as a Π1 formula of the
form “∀n(Mi(i) does not halt after n steps)”. Since K is undecidable and recursively
enumerable, K̄ is not recursively enumerable, and therefore T1 cannot be recursively
enumerable either. But since all axiomatizable theories are recursively enumerable, T1

cannot be axiomatizable.
Usually, non-axiomatizable theories are not particularly useful. However, T1 is still a
useful theory for the following reason:

Lemma 4.10. A function is provably recursive in T1 iff it is provably recursive in T .
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Proof. The proof for this lemma is given in [FLO83] as follows:
Since T ⊆ T1, any provably recursive function in T is trivially provably recursive in T1.
To prove the converse, let f be provably recursive in T1. Then there exists a Turing
machine M that computes f , and there is some proof P in T1 of the statement “M
is total”. Therefore, “M is total” can be proven in T from a true Π1 sentence ∀zF
which combines all of the “additional axioms” of T1 (the ones that are not provable in
T ) used in the proof P . (Since all of those “axioms” are Π1 sentences, their conjunction
is equivalent to a single Π1 sentence.) Therefore, the statement “(∀zF ) → (M is total)”
is provable in T . This can be rephrased as “M is total or ∃z¬F ”. We define a machine
M ′ that simultaneously simulates M on its input and checks the truth of ¬F (z) for all
natural numbers z in order (F includes only bounded quantifiers, so this is decidable for
each z). If the simulation of M halts, M ′ immediately halts and returns the result of
the simulation. If a z is found for which ¬F (z) is true, M ′ immediately halts with some
arbitrary output. Now, “M ′ is total” is provable in T by construction. Additionally,
since we know that ∀zF is true, M ′ will always halt because of the simulation of M
returning a result, not because of a counterexample for F being found. Therefore, M ′

computes the same function as M , namely f . Thus, f is provably recursive in T . (Note
again that the definition of “provably recursive” does not require a proof in T that M ′

computes f .)

No proof is given in [BH91] for the next lemma, and it is attributed to “the folklore
of proof theory”.

Lemma 4.11. For a relational structure M , let Π1(M) denote the set of Π1 sentences
that are true in M . If the independence of a statement φ from a theory T can be
demonstrated by starting with a model M of T in which φ holds and constructing a
submodel in which ¬φ holds, then φ is also independent of T ∪ Π1(M).

The authors of [BH91] claim that any imaginable technique for proving independence
from sufficiently strong theories meets the assumptions of this lemma. Under those
circumstances, they give the following corollary:

Theorem 4.12. Any independence result from an axiomatizable, consistent, sound
theory T can be extended to an independence result from T1.

4.3 Approximating a language by a complexity class

To achieve the goal of proving that an independence result for P
?
= NP implies that

NP is close to P, [BH91] defines a measure of distance between a language L and a
complexity class C called the approximation rate. We will show that L /∈ C is not
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provable iff the approximation rate of L by C is an extremely fast-growing function, i.e.
L’s complexity is very well approximated by C.

Definition 4.13. Let L ⊆ Σ∗ be a language, C be a complexity class, and f be a
recursive enumeration of C. The approximation rate of L by C is the function

RC
L (i) = max

j≤i
{min{|x| | x ∈ L ⇔ Mf(j) rejects x}}

Intuitively, RC
L (i) determines, for each individual machine Mf(j) from Mf(0), . . . ,Mf(i),

the shortest word that witnesses that Mf(j) does not recognize L, and returns the length
of the longest of these minimal witnesses. For example, if RC

L (20) = 10, then for every
machine Mf(0), . . . ,Mf(20), there is a word of length at most 10 that is either contained
in L, but rejected by the machine, or vice versa. Therefore, if RC

L grows very quickly,
the enumeration of Turing machines quickly produces Turing machines that act like
they recognize L until the words exceed a high length threshold. In particular, if L ∈ C,
RC

L is undefined for large inputs because there is a machine Mf(i) that recognizes L,
so there is no minimum word length that witnesses the difference. This proves the
following lemma:

Lemma 4.14. For every language L and complexity class C, RC
L is a total function iff

L /∈ C.

Note also that for any decidable language L, RC
L is computable via an algorithm that

simulates each machine Mf(0), . . . ,Mf(i) on all possible inputs x in quasi-lexicographical
order until it fails to correctly decide an input’s membership in L, which it can verify
via a decision algorithm for L.
What interests us here is the approximation rate of SAT by P. If this is a fast-growing
function, then SAT, an NP-complete problem, is “close” to P. We pick a standard
enumeration f of deterministic polynomial time Turing machines such that Mf(i) can
be simulated with only linear overhead and runs for at most nlog i steps on every input.

Lemma 4.15. Let R := RP
SAT be the approximation rate of SAT by P. If the in-

verse function R−1 is bounded by some time-constructible function g, then SAT ∈
DTIME(n1+log g(n+1) · g(n+ 1)).
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Proof. We claim that the following deterministic algorithm decides SAT:

input: x

for i = 0 to g(|x|+ 1) do
Use a simulation of Mf(i) to find a satisfying assignment for x. If a satisfying

assignment is found, accept x.
end for
Reject x.

First, note that even though the machines Mf(i) are treated as acceptors for a language,
it is possible to use a machine that decides SAT to find a satisfying assignment by
running the machine a linear number of times due to the self-reducibility of SAT [Rot05,
p. 107].
Since the algorithm checks whether the produced assignment is valid, it will never
incorrectly accept an input, so only members of SAT are accepted. Since R is the
approximation rate of SAT by P, R(i) gives the minimum length of x for which no
machine Mf(0), . . . ,Mf(i) will correctly decide the membership in SAT of all words up
to that length. Conversely, this means that for i := R−1(|x| + 1), there is a machine
Mf(0), . . . ,Mf(i) which correctly decides the membership in SAT of all words up to
length |x|. If x ∈ SAT, that machine will allow finding a satisfying assignment, since
the self-reduction does not require deciding any longer words. Since R−1 is bounded by
g, the loop will find that machine at some point, find the satisfying assignment, and
accept x. Therefore, every member of SAT is accepted and the algorithm decides SAT.
For an input of length n, the loop runs at most g(n+ 1) + 1 times. In each iteration,
we simulate a machine Mf(i) with i ≤ g(n + 1), which takes at most nlog g(n+1) steps,
and we simulate it at most n times to find the assignment, so each loop iteration takes
n·nlog g(n+1) = n1+log g(n+1) steps. Computing g(n+1) is possible in time g(n+1) because
g is time-constructible. This gives a total runtime in O(n1+log g(n+1) · g(n+ 1)).

4.4 Approximation and independence

We can now show the following relationship between approximation rates and provability
as presented in [BH91]:

Theorem 4.16. P ̸= NP is provable in the theory T1 iff RP
SAT is dominated by the

Wainer hierarchy.

Proof. “ ⇐= ”: Let Fα be a function from the Wainer hierarchy that dominates RP
SAT.

The definition of the approximation rate means the following formula is true:
∀i∃x, |x| ≤ RP

SAT(i) : (x ∈ SAT ↔ Mf(i) rejects x). Since Fα dominates RP
SAT, this im-

plies the following formula is also true: ∀i∃x, |x| < Fα(i) : (x ∈ SAT ↔ Mf(i) rejects x).
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Because Fα is provably recursive by Lemma 4.4, the existential quantifier is bounded.
Thus, this is a true Π1 formula, which makes it provable in T1. Since the formula
implies that no machine Mf(i) can recognize SAT correctly on all inputs, this shows
that P ̸= NP is also provable in T1.
“ =⇒ ”: Let P ̸= NP be provable in the theory T1. Since T1 is sound, this means
P ̸= NP must be true. Therefore SAT /∈ P is true and provable and by Lemma 4.14,
RP

SAT must be total. Suppose there is no Fα in the Wainer hierarchy that dominates
RP

SAT. Since RP
SAT is total and computable, Lemma 4.5 then shows that RP

SAT is not
provably recursive. But if P ̸= NP (and thus SAT /∈ P) can be proved in T1, then the
naive algorithm for RP

SAT is provably total, which would make RP
SAT provably recursive.

This contradiction shows that the dominating function Fα must exist.

Combining this with Theorem 4.12 gives the following corollary:

Corollary 4.17. If the independence of P ̸= NP from T is provable by any “imaginable
technique”, then the search problem for SAT (finding a satisfying assignment for a known
member of SAT) is in DTIME(nf−1(n+1)), where f is a function not dominated by the
Wainer hierarchy.

Proof. By Theorem 4.12, the independence result from T can be extended to an
independence result from T1. Therefore, Theorem 4.16 shows that RP

SAT is not dominated
by the Wainer hierarchy. We set f := RP

SAT. Now we can use the algorithm from the
proof of Lemma 4.15 to find a satisfying assignment for x. Since x ∈ SAT, the loop will
terminate prematurely and we do not need to compute the bound f−1(|x|+ 1). This
gives us a deterministic algorithm for the search problem with runtime f−1(n + 1) ·
n1+log f−1(n+1) ≤ nf−1(n+1).

Since the Wainer hierarchy is a family that contains very fast-growing functions, f
must grow extremely quickly, and f−1 must therefore grow extremely slowly, i.e. be
very close to constant. More precisely, for any n, f−1 is constant on the interval from
f(n) to f(n+ 1). These constant intervals grow in size very quickly. By Lemma 4.8,
nf−1(n+1) is infinitely often bounded from above throughout very long intervals by e.g.
nα(n+1), where α is the inverse Ackermann function, an extremely slow growing standard
complexity function. This means that the runtime for this algorithm is, in a sense, very
close to polynomial.

4.5 One-way functions

One common real-world application of the P
?
= NP question is the existence of one-way

functions, which are crucial to cryptography. P = NP would imply the nonexistence of
one-way functions and therefore the impossibility of various cryptographic primitives,
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although the converse is not necessarily true. However, [BH91] show that the nonex-
istence of a certain type of one-way functions is already implied if PA1 cannot prove
P ̸= NP, even if it cannot prove P = NP either. This is another expression of the idea
that an independence result for P

?
= NP implies that P and NP are “almost” equal.

First, we define our notion of one-way functions.

Definition 4.18. Let f be a function computable in polynomial time.
Let g be a standard complexity function. f is a uniform g-one-way function iff for every
deterministic Turing machine M with runtime in O(ng(n)), there is a minimum word
length N such that for all n > N , there is a word x ∈ {0, 1}n of length n for which
f(M(x)) ̸= x.
f is a uniform one-way function iff there exists a standard complexity function g such
that f is a uniform g-one-way function.

Intuitively, for sufficiently high word lengths, any algorithm attempting to invert f

will produce the wrong result for at least one word of a given length. In one sense,
this is weaker than the typical definition of a one-way function, which requires that
the probability of inverting a random input successfully is negligible. On the other
hand, this definition is stronger in the sense that it demands this property not only of
polynomial time algorithms, but of any algorithms with runtime in O(ng(n)), which is a
super-polynomial runtime bound.

Theorem 4.19. If PA1 cannot prove P ̸= NP, uniform one-way functions do not exist.

Proof. Let f be a function that is computable in polynomial time and g be a standard
complexity function. Let R := RP

SAT. By Lemma 4.15, there is a deterministic algorithm
for SAT with runtime in O(n1+logR−1(n+1) ·R−1(n+ 1)). The problem of inverting the
polynomial time function f is clearly in FNP and thus reducible to SAT. This shows
the existence of a deterministic machine M that inverts f in time O(nk·(1+logR−1(nk)) ·
R−1(nk)) for some k (substituting polynomial terms for the linear ones to account for
the runtime of the reduction function).
Since g is a standard complexity function, so is the function h defined by h(n) = 2

1
2k

g(logn),
as well as the function h′ given by h′(n) = h(nk). By Theorem 4.16, the nonprovability
of P ̸= NP in PA1 implies that R is not dominated by any function in the Wainer
hierarchy, and therefore neither is its composition with nk. Thus, according to Lemma
4.8, there exist infinitely many n with R−1(nk) < h′(n) = 2

1
2k

g(lognk). Taking the
logarithm on both sides and rearranging gives 2k log(R−1(nk)) < g(log nk) < g(n) for
infinitely many n.

22



We rewrite the runtime bound for M as follows:

nk·(1+logR−1(nk)) ·R−1(nk) = nk·(1+logR−1(nk)) · n
log(R−1(nk))

logn

= nk·(1+logR−1(nk))+
log(R−1(nk))

logn

Let e(n) be the exponent in the above expression. For sufficiently large n, we can bound
the exponent from above:

e(n) = k · (1 + logR−1(nk)) +
log(R−1(nk))

log n

= k + k · logR−1(nk) +
log(R−1(nk))

log n

< k + k · logR−1(nk) + log(R−1(nk))

< k · (logR−1(nk)− logR−1(nk)

k
) + k · logR−1(nk) + log(R−1(nk))

= k · logR−1(nk)− logR−1(nk) + k · logR−1(nk) + logR−1(nk)

= 2k log(R−1(nk))

As shown above, 2k log(R−1(nk)) is bounded above by g(n) for infinitely many n.
Therefore the runtime of M , the algorithm for inverting f , is bounded by ng(n) for
infinitely many n. We construct a machine M ′ that simulates M for at most ng(n) steps,
returning 0 if the simulation does not halt in that time. For infinitely many n, the
simulation will halt and M ′ will succeed at inverting f . Since the definition of uniform
one-way functions allows at most finitely many n for which an algorithm may succeed at
inverting f for all inputs of length n, f is not a uniform g-one-way function. But since
f and g were chosen arbitrarily, this means no function computable in polynomial time
can be uniform g-one-way for any standard complexity function g and thus uniform
one-way functions do not exist.

Applying Theorem 4.12, this means that if P ̸= NP is independent of PA, uniform
one-way functions do not exist, potentially having a similar practical impact as if
P = NP were provable, although the nonstandard definition of one-way functions used
for this result should be kept in mind here.
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5 Conclusion

5.1 Other results

We focused on independence results related to P
?
= NP. However, there are also other

similar results in complexity theory and formal language theory. In [Har85], various
results are presented that show the existence of a language L ∈ A \B for some classes
A and B such that “L /∈ B ” is independent of a theory for any representation of the
language L. For example, such results exist for non-regular context-free languages and
for languages in SPACE(n2) \ SPACE(n).
A runtime bound for SAT in case of an independence result for P

?
= NP, similar to

Corollary 4.17, is also constructed in [KOR87].

5.2 Future work

Little progress has been made in this area in recent decades. Of the primary results
presented in this paper, the most recent ones were published in 1991 [BH91].
In the area of relativization, the usefulness of relativized results has since been called
into question due to the proof that the random oracle hypothesis is false [Cha+94].
Specifically, IP = PSPACE, but for almost all oracles A, IPA ̸= PSPACEA. This means
that even results concerning equality of complexity classes such as PA and NPA that hold
for almost all oracles would not necessarily imply any results about the unrelativized
versions.
An area that shows more potential for future exploration is the potential consequences
of an independence result. There are many known consequences of P = NP, such as the
nonexistence of many cryptographic primitives and the existence of efficient algorithms
for many problems known to be in NP. Similarly, there are many results in various areas
of complexity theory that are known to follow from P ̸= NP. However, the consequences
of an independence result are underexplored. It would be interesting to see, for example,
an extension of Theorem 4.19 to a more standard definition of one-way functions, or an
exploration of other independence results that might follow from one for P ?

= NP and
their respective consequences.
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