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How to characterise expressivity – Tarski’s semantics

Definition 11
If ϕ is formula of propositional logic, with variables p1 . . . , pn, one can say that ϕ
defines the n-ary Boolean function fϕ : {0, 1}n → {0, 1} defined

s "→ s(ϕ),

where s is an assignment for the variables p1 . . . , pn.

One can then ask, which Boolean functions can be expressed in propositional logic.

In
fact, propositional logic is expressively complete (in the standard Tarskian setting).

Proposition 12
Every Boolean function can be defined in propositional logic.
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How to characterise expressivity – Team semantics – definitions

In team semantics setting, a propositional formula defines a set of teams that satisfy it.
Definition 13
We define

Teams(ϕ) := {T | T |= ϕ}

We then want to know, what are the families of teams that can be written as
Teams(ϕ) by some formula ϕ.

Definitions of downward/union closure and flatness generalise to families of teams.
Definition 14
A family of teams T is

• downward closed, if (T ∈ T and S ⊆ T) implies S ∈ T .
• union closed, if T, S ∈ T implies T ∪ S ∈ T .
• flat, if T ∈ T if and only if {t} ∈ T , for all t ∈ T.
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Properties of families of teams

Proposition 15
A family of teams T is flat if and only if it is union & downward closed and ∅ ∈ T .

Proof.
Left-to-right direction if trivial.

For the right-to-left direction, assume that T is union
& downward closed and that ∅ ∈ T . Now the left-to-right direction of

T ∈ T ⇐⇒ ∀t ∈ T : {t} ∈ T

follows from downward closure, while the converse direction follows from union closure.
The empty team property is required to omit the special case of T = ∅.
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Proposition 16
Let T be a flat family of teams. Then T ∈ T if and only if T ⊆

⋃
T .

Proof.
Left-to-right direction is trivial and follows directly from the definition of a union.

Right-to-left direction: By Proposition 15, T is union closed and downward closed.
From union closure of T it follows that ⋃ T ∈ T . Now since T is downward closed
and T ⊆

⋃
T , if follows that T ∈ T .
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How to characterise expressivity – Team semantics – results

We have already seen (and partly proved) the following closure results:
Proposition 17

• A family of teams defined by a PL-formula is flat.
• PL[dep]-definable team families are downward closed and include the empty team.

Proof.
Flatness is proven by structural induction. The cases for atomic formulae follow directly
from their semantics. The case for ∧ is trivial. Assume flatness holds for ϕ and ψ.

T |= ϕ ∨ ψ ⇐⇒ T1 |= ϕ and T2 |= ψ for some T1 ∪ T2 = T

By IH, the right-hand side is equivalent to: ∀t ∈ T : {t} |= ϕ or {t} |= ψ. This is again
equivalent to ∀t ∈ T : {t} |= ϕ ∨ ψ, due to the empty team property.

Interestingly the above results can be strengthened to if and only if!
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Expressivity of PL with team semantics

Proposition 18
For every flat family T there exists a PL-formula ϕ such that T = Teams(ϕ).

Proof.

Let T be a flat family of teams using proposition symbols p1, . . . , pn. For every
assignment s over the propositions p1, . . . , pn, let ϕs be a PL-formula whose only
satisfying assignment is s. This exists by Proposition 12. We will then define

Φ :=
∨

s∈⋃ T

ϕs

and claim that T = Teams(Φ). It is easy to check that T |= Φ if and only if T ⊆
⋃
T .

By Proposition 16, the latter holds if and only if T ∈ T .

Theorem 19
A family of teams is definable in PL if and only if the family is flat.
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Expressivity: the downward closed case

Let’s consider an extension PL[!] of PL with the so-called Boolean disjunction

T |= ϕ! ψ if and only if T |= ϕ or T |= ψ.

Proposition 20
PL[!] is downward closed and has the empty team property.

It is easy to note that dependence atoms can be expressed in PL[!]:

T |= dep(p1, . . . , pn, q) if and only if T |=
∨

b∈{⊥,⊤}n

(
pb1

1 ∧ · · · ∧ pbn
n ∧ (q ! ¬q)

)
,

where p⊥ := ¬p and p⊤ := p.

31



Expressivity: the downward closed case

Let’s consider an extension PL[!] of PL with the so-called Boolean disjunction

T |= ϕ! ψ if and only if T |= ϕ or T |= ψ.

Proposition 20
PL[!] is downward closed and has the empty team property.

It is easy to note that dependence atoms can be expressed in PL[!]:

T |= dep(p1, . . . , pn, q) if and only if T |=
∨

b∈{⊥,⊤}n

(
pb1

1 ∧ · · · ∧ pbn
n ∧ (q ! ¬q)

)
,

where p⊥ := ¬p and p⊤ := p.

31



Expressive power of PL[!]

Theorem 21
A family of teams is definable in PL[!] if and only if the family is downward closed
and includes the empty team.

Proof.
Let T be a family of teams with the aforementioned properties. Define

Φ := !
T∈T

∨

s∈T
ϕs, where ϕs is a formula whose only satisfying assignment is s.

We claim that Teams(Φ) = T . If S |= Φ, there is some T ∈ T s.t. S |=
∨

s∈T ϕs.
Thus S ⊆ T and hence S ∈ T , for T is downward closed. Conversely, if S ∈ T then
S |=

∨
s∈S ϕs, and thus S |= Φ.

Can you make the formula a bit shorter?
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Types and characterising formulae

We define some auxiliary notation and formulae:
• TypeΨ(s) := {ϕ ∈ Ψ | s |= ϕ}, for a set of PL-formulae Ψ and an assignment s.
• For Γ ⊆ Ψ, define θΓ :=

∧
ψ∈Γ ψ ∧

∧
ψ∈Ψ\Γ ¬ψ,

It is easy to check that TypeΨ(s) = Γ if and only if s |= θΓ.

• TypeΨ(T) := {TypeΨ(s) | s ∈ T}, for a team T.

Lemma 22
Assume that T and S be teams and let Ψ be a finite set of PL-formulae.

1. For each ψ ∈ Ψ, T |= ψ if and only if ψ ∈
⋂

TypeΨ(T).
2. If T |=!Ψ and TypeΨ(S) ⊆ TypeΨ(T), then S |=!Ψ.

Case 1. follows by flatness of PL, and 2. uses 1. together with the definition of !.
Intuitively, it follows due to downward closure.

33



Types and characterising formulae

We define some auxiliary notation and formulae:
• TypeΨ(s) := {ϕ ∈ Ψ | s |= ϕ}, for a set of PL-formulae Ψ and an assignment s.
• For Γ ⊆ Ψ, define θΓ :=

∧
ψ∈Γ ψ ∧

∧
ψ∈Ψ\Γ ¬ψ,

It is easy to check that TypeΨ(s) = Γ if and only if s |= θΓ.
• TypeΨ(T) := {TypeΨ(s) | s ∈ T}, for a team T.

Lemma 22
Assume that T and S be teams and let Ψ be a finite set of PL-formulae.

1. For each ψ ∈ Ψ, T |= ψ if and only if ψ ∈
⋂

TypeΨ(T).
2. If T |=!Ψ and TypeΨ(S) ⊆ TypeΨ(T), then S |=!Ψ.

Case 1. follows by flatness of PL, and 2. uses 1. together with the definition of !.
Intuitively, it follows due to downward closure.

33



Types and characterising formulae

We define some auxiliary notation and formulae:
• TypeΨ(s) := {ϕ ∈ Ψ | s |= ϕ}, for a set of PL-formulae Ψ and an assignment s.
• For Γ ⊆ Ψ, define θΓ :=

∧
ψ∈Γ ψ ∧

∧
ψ∈Ψ\Γ ¬ψ,

It is easy to check that TypeΨ(s) = Γ if and only if s |= θΓ.
• TypeΨ(T) := {TypeΨ(s) | s ∈ T}, for a team T.

Lemma 22
Assume that T and S be teams and let Ψ be a finite set of PL-formulae.

1. For each ψ ∈ Ψ, T |= ψ if and only if ψ ∈
⋂

TypeΨ(T).
2. If T |=!Ψ and TypeΨ(S) ⊆ TypeΨ(T), then S |=!Ψ.

Case 1. follows by flatness of PL,

and 2. uses 1. together with the definition of !.
Intuitively, it follows due to downward closure.

33



Types and characterising formulae

We define some auxiliary notation and formulae:
• TypeΨ(s) := {ϕ ∈ Ψ | s |= ϕ}, for a set of PL-formulae Ψ and an assignment s.
• For Γ ⊆ Ψ, define θΓ :=

∧
ψ∈Γ ψ ∧

∧
ψ∈Ψ\Γ ¬ψ,

It is easy to check that TypeΨ(s) = Γ if and only if s |= θΓ.
• TypeΨ(T) := {TypeΨ(s) | s ∈ T}, for a team T.

Lemma 22
Assume that T and S be teams and let Ψ be a finite set of PL-formulae.

1. For each ψ ∈ Ψ, T |= ψ if and only if ψ ∈
⋂

TypeΨ(T).
2. If T |=!Ψ and TypeΨ(S) ⊆ TypeΨ(T), then S |=!Ψ.

Case 1. follows by flatness of PL, and 2. uses 1. together with the definition of !.
Intuitively, it follows due to downward closure.

33



Expressive power of PL[dep]

Consider next the formula stating that the truth value w.r.t. a set of propositions
Ψ ⊆ PROP is constant:

γ :=
∧

p∈Ψ
dep(p).

Hence T |= γ if and only if |TypeΨ(T)| ≤ 1.

Define now recursively

γ0 := p ∧ ¬p, γk+1 := (γk ∨ γ).

It is easy to show by induction that T |= γk if and only if |TypeΨ(T)| ≤ k.
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Lemma 23
If Ψ ⊆ PROP is a finite set of propositions and T ̸= ∅ a team, there is a ξT ∈ PL[dep]
s.t. for every S

S |= ξT ⇐⇒ TypeΨ(T) ̸⊆ TypeΨ(S).

Proof.
Let |TypeΨ(T)| = k + 1. Recall θΓ is a characterisic formula of Γ. We define

ξT :=
(∨

Γ∈X
θΓ
)
∨ γk, where X = P(Ψ) \ TypeΨ(T).

Now given a team S we have

S |= ξT ⇐⇒ there are T1,T2 s.t. T1 ∪ T2 = S,TypeΨ(T1) ⊆ X, |TypeΨ(T2)| ≤ k
⇐⇒ |TypeΨ(T) ∩ TypeΨ(S)| ≤ k
⇐⇒ TypeΨ(T) ̸⊆ TypeΨ(S).
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Theorem 24
PL[!] is equi-expressive with PL[dep].

Proof.
PL[!] ≤ PL[dep] direction: Let ϕ =!Ψ be a PL[!]-formula in a normal form,
where Ψ ⊆ PL. Define

η :=
∧

T ̸∈Teams(ϕ)
ξT, where ξT is as in Lemma 23.

Intuitively S |= η iff no falsifying team of ϕ is completely subsumed by S.
By definition η is a PL[dep]-formula. To prove that Teams(η) = Teams(ϕ), assume
first that S ∈ Teams(ϕ), and consider any T ̸∈ Teams(ϕ). It follows from Lemma 22
that TypeΨ(T) ̸⊆ TypeΨ(S). Hence by Lemma 23, S |= ξT. Thus S ∈ Teams(η).
Assume then that S ̸∈ Teams(ϕ). Since TypeΨ(S) ⊆ TypeΨ(S), it follows from
Lemma 23 that S ̸|= ξS. Thus S ̸∈ Teams(η).
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Dimensions of team families

Definition 25
The lower dimension dim(ϕ) of a formula ϕ to is the least n such that

T |= ϕ ⇐⇒ S |= ϕ for all S ⊆ T s.t. |S| ≤ n.

The lower dimension of a flat formula is 1, and for a dependence atom it is 2. The lower
dimension is not easy to approximate compositionally,

for that we define the notion
of upper dimension. Define M(ϕ) as the set of subset maximal teams satisfying ϕ.

Definition 26
The upper dimension Dim(ϕ) of a formula ϕ is the cardinality of M(ϕ).

Interestingly, Dim(ϕ) can be given sharp compositional estimates, and it can be shown
that dim(ϕ) ≤ Dim(ϕ).
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Estimates for the upper dimension

Lemma 27
We have the following upper dimension estimates for ϕ,ψ ∈ PL[!]:

1. Dim(p) = Dim(¬p) = 1.
2. Dim(ϕ ∧ ψ) ≤ Dim(ϕ)Dim(ψ).

3. Dim(ϕ ∨ ψ) ≤ Dim(ϕ)Dim(ψ).
4. Dim(ϕ! ψ) ≤ Dim(ϕ) + Dim(ψ).

Proof.
We omit the cases for (1) and (3), since (1) is trivial, and (3) is analogous to (2).

We
defer the proof of (2) to the lecture notes.
Case (4): For the Boolean disjunction, it holds that

M(ϕ! ψ) ⊆ M(ϕ) ∪ M(ψ)

and the right-hand side of the inclusion generates the family Teams(ϕ! ψ). The
dimension estimate follows immediately.
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What are dimensions good for?

Proposition 28
Dim(dep(p1, . . . , pn, q)) = 22n .

Proposition 29
For ϕ ∈ PL[!], Dim(ϕ) ≤ 2k, where k is the number of occurrences of ! in ϕ.

Theorem 30
Let ϕ ∈ PL[!] such that Teams(ϕ) = Teams(dep(p1, . . . , pn, q)). Then ϕ contains
more than 2n symbols.

Proof.
By Prop 28, Dim(ϕ) = Dim(dep(p1, . . . , pn, q)) = 22n . Thus 22n ≤ 2occ!(ϕ) by
Prop. 29, implying 2n ≤ occ!(ϕ). Hence ϕ has at least 2n Boolean disjunctions.

Thus, any translation from PL[dep] to PL[!] leads to an exponential blow-up.
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Expressivity of propositional inclusion logic

Theorem 31
A family of teams is definable in PL[⊆] if and only if it is union closed and includes the
empty team.

Proof.
We will omit the proof, which combines ideas from the characterisation of PL[!] and
its equivalence with PL[dep]. The result was first shown in [HS15].
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Conclusion of Lecture 2

• Properties of families of teams.
• Expressivity characterisation of PL[!].
• Equivalence of PL[!] and PL[dep].
• Expressivity characterisation of PL[⊆].
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